Poisson Operator ================== 1D --- .. autofunction:: dec.spectral.laplacian .. math:: \mathbf{\nabla}^2 f = q .. math:: \star \mathbf{d} \star \mathbf{d} f=q Discrete form: Primal: .. math:: \mathbf{\widetilde{H}}^{1} (\mathbf{\widetilde{D}^{1}} \mathbf{H}^{1} \mathbf{D^{0}} \bar{f}^{0} + a)=\bar{q}^{0} where `a` is Neumann b.c. Dual .. math:: \mathbf{H}^{1} \mathbf{D^{0}} \mathbf{\widetilde{H}}^{1} (\mathbf{\widetilde{D}^{1}} \tilde{f}^{0} + b)=\tilde{q}^{0} where `b` is Dirichlet b.c. Periodic grid 1D ----------------- .. math:: \begin{eqnarray} f(x) &=& e^{\sin x} \\ q(x) &=& e^{\sin x} (\cos^2 x - \sin x) \end{eqnarray} .. plot:: plot/cheb/poisson1d_periodic.py Chebyshev grid 1D ------------------ .. math:: \begin{eqnarray} f(x) &=& e^x \\ q(x) &=& e^x \end{eqnarray} Boundary Conditions: Dirichlet boundary conditions: .. math:: f(-1) = e^{-1} \quad f(+1) = e Neumann boundary condition: .. math:: f^\prime(-1)= e^{-1} \quad f^\prime(+1)= e .. plot:: plot/cheb/poisson1d_cheb.py 2D ------ .. math:: (\star \mathbf{d} \star \mathbf{d} + \mathbf{d} \star \mathbf{d} \star ) f=q Periodic grid 2D ----------------- .. math:: f = e^{\sin(x)} \mathbf{d}x + e^{\sin(y)} \mathbf{d}y Convergence for operator. .. plot:: plot/cheb/poisson2d_periodic.py Chebyshev grid 2D ----------------- .. math:: f = e^{x} \mathbf{d}x + e^{y} \mathbf{d}y .. math:: q = e^{x} \mathbf{d}x + e^{y} \mathbf{d}y Convergence for operator. .. plot:: plot/cheb/poisson2d_cheb.py Vector field -------------- .. plot:: plot/cheb/poisson_2d_example.py